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Abstract

The design of bounded, higher-order convection schemes is considered with a view to selecting those discretizations
giving good resolution of sharp gradients, while at the same time providing competitive accuracy and convergence
behaviour when applied to smooth, recirculating flows. The present work contains a detailed classification and analysis
and extensive tables of most non-linear scalar convection schemes so far proposed within the cell-centred, finite-volume
framework. The analysis includes a review and comparison of the two most frequently-used non-linear approaches, flux
limiters (FL) and normalized variables (NV), and the three major boundedness criteria typically employed: total-varia-

tion diminishing (TVD), positivity and the convection-boundedness criterion (CBC). All NV schemes considered are con-
verted to FL form to allow direct comparison and classification of a wide range of schemes. Several specific design
principles for positive non-linear schemes are considered and it is shown how these can be applied to understand the
relative performance of different approaches. Finally the performance of many existing schemes is compared and ranked
on the basis of two scalar convection test cases, one smooth and one discontinuous, which demonstrates the wide var-
iation in both accuracy and convergence behaviour of the various schemes and the benefits of the design principles
considered.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The discretization of the terms representing convective transport remains one of the most challenging
aspects in the numerical simulation of fluid-flow phenomena. In the context of the cell-centred, finite-volume

discretizations considered here, the introduction of second-order upwind-biased schemes from the 1960s
onwards marked a major step forward, allowing more accurate solutions of convection-dominated flows at
higher Reynolds numbers.
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Such linear convection schemes, although more stable than pure central differencing and more accurate
than first-order upwinding (FOU), still remain vulnerable to unphysical oscillations under some circum-
stances, in particular in the presence of sharp gradients. This limitation is predicted by Godunov’s famous the-
orem [40] stating that no linear convection scheme of second-order accuracy or higher can be monotonic. The
answer has been the use of non-linear discretizations, which adjust themselves according to the local solution
so as to maintain bounded behaviour.

Though it is now well-known that the use of non-linear convection schemes can lead to solutions combining
boundedness and accuracy, it is clear from published literature and industrial practice that the wide variation
in the performance of such schemes, and the principles for their appropriate selection, are much less well
understood. In [59] the present authors undertook a study to classify and analyze non-linear schemes and
to design new ones suitable for the wide range of flows typical of industrial applications. Particular attention
was paid to those discretizations giving good resolution of sharp gradients, while at the same time providing
competitive accuracy and convergence behaviour when applied to smooth, recirculating flows. The present
work expands and updates significantly the earlier study including a more detailed classification and analysis
and extensive tables of most non-linear scalar convection schemes so far proposed, within the cell-centred,
finite-volume framework.

The analysis includes a review and comparison of the two most frequently-used non-linear approaches,
that is flux limiters (FL) and normalized variables (NV), and the three major boundedness criteria typi-
cally employed: total-variation diminishing (TVD), positivity and the convection-boundedness criterion

(CBC). All NV schemes considered are converted to FL form to allow direct comparison and classifica-
tion of a wide range of schemes. Several specific design principles for positive, non-linear schemes are con-
sidered and it is shown how these can be applied to understand the relative performance of different
approaches. Finally the performance of many existing schemes is compared and ranked on the basis of
two scalar convection test cases, one smooth and one discontinuous, which demonstrates the wide varia-
tion in both accuracy and convergence behaviour of the various schemes and the benefits of the design
principles considered.

Only steady-state, cell-centred, finite-volume solutions of convective conservation laws are considered, for
which a model problem is the linear, scalar convection equation:
uðx; y; zÞ � $/ ¼ 0; ð1Þ
where / is a scalar variable being convected by a velocity field u(x,y,z).
The finite-volume discretization for a whole cell may be summarized as:
X

nb

anb /nb � /Pð Þ ¼ 0; ð2Þ
where /P is the cell-averaged value of the variable stored at the cell centre, /nb the values at the cell neighbours
and anb the discretization coefficients. The particular procedure by which this system of equations may be re-
solved will not be considered here. All of the discretizations considered will be of a cell-centred, finite-volume
variety and all will be ‘‘dimensionally split’’, that is 2D and 3D implementations will consist of one-dimen-
sional schemes applied separately along each of the grid directions.

The key problem in defining cell-centred finite-volume discretizations is the interpolation of cell-face values

of the convected variable from the cell-averaged values, stored at the cell centres. All of the schemes considered
here calculate face values using at most three cell-centre values (giving a five-node stencil for a whole cell) and
all may be described using the upwind-biased stencil shown in Fig. 1. It should be noted that all of the con-
vective discretizations described here may be applied to time-varying problems when combined with an appro-
priate temporal discretization and time-step restriction.
2. Linear schemes

Many well-known linear, higher-order schemes may be expressed conveniently as members of the class of
so-called j-schemes, developed originally as part of van Leer’s variable-extrapolation, MUSCL approach
[52,53]. The j-scheme formulation will be reviewed here both because it forms a helpful framework within



Fig. 1. Sketch of upwind-biased stencil and notation.
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which to analyze linear schemes and because it provides a platform for the construction and interpretation of
non-linear schemes.
2.1. j-scheme formulation

The cell-face value of the convected variable, predicted by the j-schemes, may be written, using the nota-
tion outlined above, either as the first-order upwind (FOU) scheme enhanced by an additional ‘‘anti-diffusive’’
term:
/f ¼ /C þ
1þ j

4
ð/D � /CÞ þ

1� j
4
ð/C � /U Þ

� �
ð3Þ
or as the central-difference scheme with the addition of a stabilizing, upwind-biased ‘‘artificial-dissipation’’
term:
/f ¼
1

2
/C þ /Dð Þ � 1� j

4
/D � 2/C þ /Uð Þ: ð4Þ
Both of these expressions assume a uniform grid spacing however the generalization to non-uniform grid spac-
ing is quite straightforward:
/f ¼ /C þ
DxC

2

ð1þ jÞ
2

o/
ox

� �
f

þ ð1� jÞ
2

o/
ox

� �
u

( )
; ð5Þ
where DxC = xf – xu and:
o/
ox

� �
f

¼ /D � /C

xD � xC
;

o/
ox

� �
u

¼ /C � /U

xC � xU
: ð6Þ
It can be seen clearly from the upwind formulation in (5) that the higher-order correction employs a linear
weighted average of two local gradients of the convected variable: one across the cell face in question and the
second immediately upwind, see Fig. 1. The weighting is controlled by the variable j, with a value of j = 1
eliminating the upwind gradient and a value of j = �1 eliminating the centred gradient. Similarly it can be
seen from the artificial-dissipation form (4) that j = 1 eliminates the artificial viscosity term while for values
of j < 1 its magnitude increases as j decreases. The average of the gradients is convex for values of j in the
range [�1,1].

Several well-known higher-order convection schemes are represented by different values of j, given here in
the order of increasing upwind bias (and summarized in Table A1):

� j = 1: central difference (CDS) – the only j-scheme with no upwind bias, face value calculated by linear
interpolation from the two adjoining nodal values.
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� j = 1
2
: quadratic-upwind interpolation (QUICK) [25] – face value calculated by quadratic interpolation

through three nodes, two upwind and one downwind. This gives a third-order approximation for the face
value though only a second-order approximation for the whole cell.
� j = 1

3
: cubic-upwind interpolation (CUI) [1] – unique third-order j-scheme. Proposed by Agarwal [1] in a

finite-difference context where it is equivalent to fitting a cubic polynomial through a four-point upwind-
biased stencil. The term ‘‘CUI’’ is not strictly consistent with ‘‘LUI’’ or ‘‘QUICK’’ but is a convenient
shorthand which will be followed here.
� j = 0: Fromm’s scheme [13] – specially designed to minimize dispersion error and uniquely symmetric with

equal weighting given to the centred and upwind gradients.
� j = �1: linear-upwind interpolation (LUI) [4,36,57] – the only fully upwind j-scheme, with the face value

calculated by linear extrapolation from the two upwind nodal values. Sometimes referred to as ‘‘second-
order upwind’’ (SOU).

All of these schemes require at most a five point stencil in one dimension and all are linear when applied to
the linear advection equation. In addition it may be shown that none of the schemes are bounded, i.e. all allow
unphysical spatial oscillations in the solution under some circumstances, as predicted by Godunov’s theorem
[40] and discussed further below.

2.2. Accuracy and the modified differential equation

It is of interest here to examine the accuracy of these linear schemes using the modified or equivalent dif-
ferential equation which gives some indication of the actual equation being solved and to what extent this dif-
fers from the original continuous equation. The modified differential equation for the steady, linear advection
equation, in one dimension, discretized using the j-schemes may be written as:
Table
Gradie

j-sche

1

1
2

1
3

0

�1
u/x ¼ �
1

12
ð3j� 1ÞuDx2/xxx þ

1

8
ðj� 1ÞuDx3/xxxx þ � � � : ð7Þ
In this equation terms appearing on the left-hand side represent the original continuous equation while
those on the right-hand side represent the leading terms of the truncation error introduced by the discretiza-
tion. Of the two leading terms in the truncation error, the first is dispersive in nature and the second dissipa-
tive, the implications of which are discussed for example in [28]. In the unsteady case additional terms would
appear on the right-hand side depending upon the specific time discretization considered.

The modified equation reveals immediately that all of the j-schemes possess at least second-order trunca-
tion errors. Only for the j = 1

3
(CUI) scheme is the leading dispersive term in the truncation error eliminated

entirely, leading to third-order accuracy. It should be noted that from the point of view of practical applica-
tion the size alone of the truncation error may not be the only factor of importance – its nature can also have
serious implications for convergence behaviour, as discussed further below. Table 1 summarizes the relative
slope weighting factors for various j-schemes along with the coefficients of the two leading terms on the
right-hand side of the modified equation.

It is also instructive to consider the modified equation for the case of a cell having different j-schemes, ju

and jf, applied respectively to the cell faces u and f (see Fig. 1):
1
nt weighting factors and modified-equation coefficients for various j-schemes

me Centred weighting Upwind weighting Dx2 coefficient Dx3 coefficient

1 0 � 1
6 0

3
4

1
4 � 1

24 � 1
16

2
3

1
3 0 � 1

12

1
2

1
2

1
12 � 1

8

0 1 1
3 � 1

4
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u/x ¼
1

2
ðju � jf ÞuDx/xx �

1

12
ð3ju � 1ÞuDx2/xxx þ

1

8

7ju

6
� jf

6
� 1

� �
uDx3/xxxx þ . . . : ð8Þ
It can be seen that this introduces a leading first-order term whose coefficient depends on the difference in the j
values and falls in the range [�1,1], with the extreme values representing combinations of j = 1 and �1. The
magnitude of this coefficient can therefore be even larger than that for the first-order upwind scheme, which is
1
2
. Many of the non-linear schemes considered below use combinations of j-schemes, even for smooth solu-

tions, and hence will tend to introduce this first-order term to a varying extent.
It should be noted that the above analysis only applies strictly to the one-dimensional steady case on uni-

form grids, and then only to smooth solutions, however it is very instructive in giving a qualitative understand-
ing of the relative behaviour of different schemes. While the j-schemes will not maintain strict second-order
accuracy on non-uniform meshes they are still linearity preserving (i.e. respecting a linear solution) if imple-
mented using the form (5).
2.3. Comparative performance of linear schemes

In [58] the performance of the above j-schemes, along with a number of non-linear schemes, all imple-
mented in deferred-correction form, was examined for several high-Reynolds-number laminar incompress-
ible flows with significant recirculation and in [59] a similar assessment was carried out for two scalar
advection cases. The results from the scalar advection tests in [59] are summarized in Table B1 and dis-
cussed in more detail in Section 7. It was found for the smooth cases that in practice the CUI, Fromm’s
and QUICK schemes gave very similar results which were close to the reference solutions already at med-
ium grid levels, while both CDS and LUI were noticeably less accurate. In terms of convergence behaviour,
Fromm’s scheme showed significant advantages over the other higher-order schemes considered. It required
less under-relaxation and achieved the specified convergence criterion with approximately 25% less CPU
time than the CUI and QUICK schemes, which were themselves somewhat faster than LUI and CDS. This
favourable convergence behaviour is also generally reflected in the various flux-limited forms of Fromm’s
scheme, considered below.
3. Non-linear schemes – flux-limiter approach

Linear schemes, in particular members of the j-family, which employ upwind-biased higher-order discret-
izations, have been used with some success in the discretization of convection terms for a number of years.
Such linear schemes, though more stable than pure central differencing, still however remain vulnerable to
unphysical spatial oscillations (wiggles) under some circumstances.

This limitation is predicted by Godunov’s theorem [40] which states that no linear convection scheme with
greater than first-order truncation error can be monotonic. The answer to this problem has been the use of
non-linear discretizations, that is schemes which adjust themselves in some way according the local solution
values so as to maintain bounded behaviour. One of the most effective approaches to constructing non-linear
schemes has proved to be use of ‘‘flux limiters’’ – simple functions which define the convection scheme based
on a ratio of local gradients in the solution field [46,47].
3.1. Flux-limiter formulation

The basic flux-limiter formulation used here follows that of Roe in [39] and differs from that of Sweby
[46,47] and Roe in [38,40] in that the spatial terms are divorced entirely from the time discretization used
(if any). This is more appropriate for pressure-based solutions of viscous flows and may be extended easily
to time-varying cases using standard time-step treatments.

As shown by Roe [39], non-linear, flux-limited convection schemes can be developed quite naturally as a
generalization of the j-scheme formula in Eq. (5), by expressing the higher-order correction as a general
weighted average of the centred and upwind gradients in the solution:
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/f ¼ /C þ
DxC

2
B

o/
ox

� �
f

;
o/
ox

� �
u

" #
: ð9Þ
The non-linear averaging function B(p,q) is designed to give higher-order accuracy where possible while ensur-
ing that some prescribed boundedness criterion is fulfilled. B(p,q) must be homogeneous and thus (9) may be
rewritten more conveniently as:
/f ¼ /C þ
DxC

2
WðrÞ o/

ox

� �
u

; ð10Þ
where W(r) = B(r, 1) is termed a limiter function and the gradient ratio r is defined as:
r ¼ o/
ox

� �
f

o/
ox

� �
u

�
; ð11Þ
which simplifies in the case of a uniform mesh to:
r ¼ /D � /C

/C � /U
: ð12Þ
It should be noted that some authors define r using the reciprocal of the above expressions which changes the
form of non-symmetric limiters but leaves symmetric ones unaltered.

Certain linear limiter functions recover familiar linear schemes, for example W(r) = 0 gives first-order
upwind, and the limiter corresponding to the j-schemes is:
WðrÞ ¼ ð1þ jÞ
2

r þ ð1� jÞ
2

: ð13Þ
Hence W(r) = r represents the central-difference scheme, W(r) = 1 linear-upwind interpolation and all other
j-schemes fall in the region enclosed by these two lines. These linear schemes therefore appear as straight
lines in the Sweby flux-limiter diagram [46,47], which takes the form of a plot of W(r) against r, as shown in
Fig. 2. Some general properties of flux-limiter functions, both desirable and undesirable, are discussed in
Section 5.

Various significant regions can be identified in the FL diagram, based on the value of the gradient ratio, r.
The r = 0 axis separates extrema (r < 0) from monotonic solutions (r P 0) and within the monotonic region
r � 1 represents smooth, monotonic solutions (r = 1 implies linear variation). Regions of significant mono-
tonic solution curvature, associated with discontinuities, can be identified by r P 0 and r� 1 (negative cur-
vature) or r� 1 (positive curvature).
Fig. 2. Flux-limiter diagram: Sweby second-order TVD region and j-schemes.
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3.2. Boundedness criteria

The ideal limiter function should achieve fully bounded behaviour in the solution without compromising
the accuracy achieved by the best linear schemes. In order to achieve the desired bounded behaviour, limiter
functions are designed to fulfill particular boundedness criteria, usually either the total-variation diminishing

(TVD) [16,46,47] or positivity [43,44] conditions.
3.2.1. Total-variation diminishing

The total-variation diminishing or TVD concept was introduced by Harten [16] and translated by Sweby
[46,47], in the context of an explicit time discretization, into a set of limitations on the behaviour of a flux-lim-
iter function:
0 6 WðrÞ 6 minð2r; 2Þ; r P 0 and WðrÞ ¼ 0; r 6 0; ð14Þ
which define a region in the flux-limiter diagram. Note that the second condition does not arise directly
from the TVD requirement but is added as a safe treatment for extrema. Sweby also combined the area
swept out by the full range of j-schemes with the TVD region to create a region in the FL diagram, shown
in Fig. 2, within which schemes can be both second order and TVD. Roe [39] considered a semi-discrete
form and derived the TVD condition W(r) 6 max(0, 2r) for the spatial discretization (ignoring any time-step
restrictions).

Roe [3,38] has shown that in the context of explicit time-varying schemes a weaker set of conditions can be
employed, depending upon the local Courant number. Goodman and Leveque [15] showed that on general
grids in two space dimensions TVD schemes cannot be more than first order, though, as noted by Leveque
[28], this does not prevent one-dimensional TVD schemes being applied quite successfully in multiple dimen-
sions through the use of ‘‘dimensional splitting’’ along individual grid directions, though such schemes are not
technically TVD.
3.2.2. Positivity
More flexible boundedness criteria can be derived by separating the space and time discretizations and

replacing the TVD concept with more general conditions on the coefficients of the nodal discretization (2).
Patankar [34] argued on physical grounds that a discretization of the form (2) should have the property that
the coefficients ‘a’ should all be of the same sign. This property, referred to in general as positivity, is possessed
by FOU but not by any of the j-schemes. Jameson [19,20] has shown that when the same requirement is
placed on the semi-discretization of a general scalar, hyperbolic conservation law, with a compact stencil con-
sisting only of immediate neighbours, it leads to schemes in which local extrema can only diminish (the local-

extremum diminishing or LED property).
Spekreijse [43,44] derived a set of conditions for the monotonicity of a flux-limited, finite-volume scheme of

the form (10) on a uniform structured mesh in multiple dimensions. The coefficient of the immediate upwind
neighbour in each grid direction is required to be positive (just as in [46,39]), as well as having a uniform upper
bound, and Spekreijse defined the following conditions to meet these requirements:
a 6 WðrÞ 6 M and �M 6
WðrÞ

r
6 2þ a; ð15Þ
where a 2 [�2,0] and M 2 (0,1) are two constants. These inequalities prescribe a region in the flux-limiter
diagram, bounded by straight lines, as shown in Fig. 3. Sweby’s TVD region in the FL diagram is entirely
contained by Spekreijse’s positivity region, for a = 0 and M = 2, and hence all TVD schemes will also be po-
sitive but not necessarily vice versa.

Though the regions of the FL diagram and the condition for linearity preservation remain invariant on
non-uniform meshes with the above limiter formulation, it should be noted that the TVD and positivity cri-
teria are affected and the above expressions do not guarantee boundedness in the presence of a varying grid
distribution. The issue of achieving boundedness on non-uniform meshes has been considered by Berzins and
Ware [7], Holstad [17] and Berger et al. [6].
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Fig. 3. Flux-limiter diagram: Spekreijse positivity region.
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3.3. Classical limiter functions

A number of flux limiter functions have been defined which fulfill some or all of the above criteria, with the
majority taking the form either of piecewise-linear functions, ratios of equal-order polynomials or combina-
tions of the two. Some now ‘‘classical’’ limiter functions to be found in standard texts, and all originating from
before 1985, are described below and illustrated in Fig. 4. All of these schemes are symmetrical and therefore
all are at least tangential to Fromm’s scheme at r = 1, see Section 5. These limiters can be shown to be rep-
resentatives of wider classes of schemes, as discussed in Section 6.

3.3.1. Minmod [41]
WðrÞ ¼ max½0;minðr; 1Þ� Minmod ð16Þ

This represents the simple expedient of choosing the shallowest of either the upwind or centred gradients away
from extrema and a gradient of zero (i.e. first-order upwind) in the presence of extrema (for r 6 0). Its behav-
iour away from extrema can also be interpreted as switching between the CDS and LUI linear schemes and it
appears as the lower bound of Sweby’s second-order TVD region in the flux limiter diagram, Fig. 2. It is one of
the simplest methods for achieving bounded behaviour, though not the most effective, and seems to have been
viewed by Roe and Baines [41] mainly as a temporary measure while other possibilities were explored. Its dif-
fusive nature can be understood from the modified equation (8) where it can be seen that the combination of
j = 1 and �1 in a single cell introduces a local first-order term larger than that for first-order upwind.

3.3.2. Superbee [38]
WðrÞ ¼ max½0;minð2r; 1Þ;minðr; 2Þ� Supberbee ð17Þ
Fig. 4. Flux-limiter diagram: the five ‘‘classical’’ flux limiters.
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Superbee appears in the FL diagram as the upper bound of Sweby’s second-order TVD region in the flux lim-
iter diagram, Fig. 2. The scheme was designed to achieve the best possible resolution of discontinuities, in
which it is very effective, though its extensive use of first-order downwinding (W(r) = 2r) in regions of high
solution curvature leads to ‘‘over-compressive’’ behaviour in smooth regions, tending for example to
square-off smooth extrema. In addition, Superbee, like Minmod, also switches between j = 1 and �1 in the
smooth region, though in a different combination. This will again tend to introduce a local first-order term
of the same size but opposite sign to that for Minmod.

3.3.3. MUSCL [50,51] � �� �

WðrÞ ¼ max 0;min 2r;

r þ 1

2
; 2 MUSCL ð18Þ
van Leer proposed this scheme originally as a slope-limited form of Fromm’s scheme, within the context of his
variable-extrapolation approach. Converted to FL form, it follows Fromm’s scheme as much as possible
across Sweby’s TVD region, only deviating in regions of high solution curvature or at extrema. It is frequently
referred to simply as the ‘‘MUSCL’’ limiter due to its selection in the final MUSCL approach [52], a practice
which will be followed here. As will be shown below, it offers an appealing combination of accuracy in smooth
flow, reasonable resolution of sharp gradients and the good convergence characteristics associated with
Fromm’s scheme. This is the only one of the classical limiters which does not introduce the local first-order
term of Eq. (8) for smooth solutions (by using only Fromm’s scheme in the smooth region). Barth and Jes-
persen [5] used the same limiter form in their unstructured grid technique.

3.3.4. Harmonic [50,51]
WðrÞ ¼ r þ jrj
r þ 1

Harmonic ð19Þ
This is a smooth function for r P 0 and was again developed by van Leer in the form of a slope limiter based
on Fromm’s scheme. Though often described as a limited form of Fromm’s scheme, it is important to note
that, unlike the MUSCL limiter, it reproduces Fromm’s scheme only for the single value r = 1. It is so named
as the slope used for the higher-order correction, (9), is a harmonic average of the centred and upwind gra-
dients. In common with all smooth limiters, the local first-order term, shown in Eq. (8), will be introduced
as each value of r is associated with a different j value (though in general the size of the term will be less than
that for Minmod or Superbee).

3.3.5. van Albada [49]
WðrÞ ¼ rðr þ 1Þ
r2 þ 1

van Albada ð20Þ
This limiter is smooth, finite and continuous over the entire range of r, which is especially advantageous for
fully-implicit implementations, and it tends to one as r tends to ±1. It is the only one of the ‘‘classical’’ lim-
iters which does not revert to first-order upwind at extrema (W(r) = 0 for r 6 0). It therefore does not conform
to Sweby’s TVD criteria for r < 0 but does obey Spekreijse’s weaker positivity criteria. It is interesting to note
that very few such limiter functions have been proposed since van Albaba, though five smooth, continuous
functions, with similar or better performance, most notably the OSPRE limiter, were proposed in [59].

4. Non-linear schemes – normalized-variable approach

The normalized-variable (NV) approach, proposed by Leonard [26,27] and further developed by Gaskell
and Lau [14], uses the quantity:
/	C ¼
/C � /U

/D � /U
ð21Þ
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as a gauge of local solution behaviour. Linear schemes may be expressed as linear relationships between the
similarly-normalized face value, /	f , and /	C, which appear as straight lines in the normalized-variable (NV)

diagram, shown in Fig. 5. As for the FL diagram, various regions can be identified: values of /	C between 0
and 1 indicate monotonic variation in the solution while values outside this range indicate the presence of
an extremum. Values close to /	C ¼ 0 or 1 indicate strong solution curvature while the value /	C ¼ 1

2
indicates

a linear variation in the solution for which a normalized face value of /	f ¼ 3
4

is required to achieve linearity
preservation.

4.1. Boundedness criteria

The most widely referenced boundedness criterion using the NV approach is Gaskell and Lau’s Convection-

Boundedness Criterion (CBC) [14] which is based on the premise that for a scheme to produce computed bound-
edness it must possess both convective stability (essentially upwind bias) and interpolative boundedness (the face
value must be bounded by the local cell-centre values). Their CBC appears graphically as a region in the NV
diagram, shown in Fig. 5 by the thick black triangle and FOU line, and is violated by all j-schemes. The CBC
requires that if the local solution is monotonic then the predicted face value must fall between the FOU and
first-order downwind lines, while if there is an extremum the FOU value must be used. Yu et al. [61] have pro-
posed a modified version of the CBC in NV form which is more restrictive for /	C in the range [0,1] but does
not impose FOU at extrema. Leonard’s original analysis [26,27] was also less restrictive than the CBC at
extrema.

4.2. Normalized-variable schemes

NV schemes typically use conditional statements to switch between linear schemes or polynomial curve fits
in the NV diagram. Some examples of piecewise-linear NV schemes are: SMART [14], SOUCUP [63] and
BSOU [32] while HLPA [64] and SMARTER [9] represent respectively quadratic and cubic curve fits. Leon-
ard’s SHARP scheme [27] is unusual in having a more complex functional form and not reverting to FOU at
extrema. The Gamma scheme of Jasak et al. [21] is a bounded form of CDS with a parameter controlling the
resolution of discontinuities (see Section 6.5).

It should be noted that three of the above NV schemes: SOUCUP, BSOU and HLPA are identical to earlier
flux-limited schemes, expressed as in (10), respectively: Minmod, Chakravarthy–Osher (for a = 0) [8] and Har-
monic. The cubic fit used in SMARTER, which in common with most NV schemes is tangential to QUICK,
has been published at least four times under different names [9,33,62,65], the earliest name being used here (see
also Section 6.4.3). In the present work, following the approach adopted in [59], all NV schemes have been
converted into more convenient FL forms, facilitating their analysis and classification in Section 6. FL forms
of various NV schemes are given in the tables of Appendix A (along with their various aliases).
Fig. 5. Normalized-variable diagram: CBC region and j-schemes.



Fig. 6. Normalized-variable diagram: Spekreijse positivity region.
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4.3. Relationship to flux-limiter approach

The variable /	C is analogous to the gradient ratio, r, and the two are related by the simple expression (for
constant grid spacing): /	C ¼ 1=ðr þ 1Þ, which allows the conversion of NV schemes to FL and vice versa. It
also allows the CBC to be compared with the TVD and Positivity boundedness criteria, as described below. It
is important to note that in contrast to the gradient ratio, r, /	C is fundamentally a ratio of differences which
means that for non-uniform meshes the form of the NV diagram changes with the geometry of the mesh, in
particular the location of the critical point required for linearity preservation (1

2
; 3

4
). The approach can be

applied to non-uniform meshes via a transformation back to a uniform mesh [12,21] but this increases the
complexity of the resulting NV schemes.

4.4. Comparison of boundedness criteria

As shown in [58,59], Spekreijse’s positivity region in the FL diagram can be transformed into the NV dia-
gram, Fig. 6. The region produced is controlled by four straight lines whose gradients are functions of a and
M. If the CBC is translated into FL form it is similar to Sweby’s TVD criteria but with an infinite maximum
bound, i.e. M =1. This results from the infinite slope permissible in the /	f curve in the NV diagram at
/	C ¼ 0. The CBC is therefore weaker than TVD for r P 0 but equivalent to TVD and stronger than positivity
for r 6 0. Hence TVD) CBC) positivity but not vice versa. The modified CBC of Yu et al. [61] is similar in
form but less flexible than the positivity conditions. In practice most positive schemes will also fulfill the CBC
with the exception of smooth continuous limiters such as van Albada which do not respect W(r) = 0 for r 6 0.

5. Design principles for non-linear schemes

This section considers two essential and five optional properties which non-linear convection schemes can
be designed to achieve. While the two essential properties are shared by almost all published schemes, the
optional properties help to distinguish those schemes which are more or less successful in practice. The two
essential properties are listed first.

5.1. Boundedness

This is the property of not producing unphysical spatial oscillations in the solution, including under/over-
shoots of physical limits on variables, which is not possessed by any linear scheme of greater than first-order
accuracy. As discussed in Section 3.2, Spekreijse’s positivity conditions give a flexible and general criterion for
achieving boundedness and for this reason will be preferred here over the TVD and CBC conditions also out-
lined above. A scheme will be classed as positive if its limiter function stays within the Spekreijse positivity
region, shown in Fig. 3.
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5.2. Linearity preservation

This is achieved by ensuring that W(1) = 1 which signifies that the scheme will respect exactly a linear var-
iation in the solution, which occurs for r = 1. On a uniform mesh this also implies second-order accuracy. The
region around r = 1 represents smooth monotonic variation in the solution and therefore most areas of typical
flow solutions away from discontinuities and extrema. It is in this region that it is most important to ensure
that a j-scheme with desirable properties is active. Only schemes fulfilling this condition will be considered
here.

Zijlema [66] has also proposed an additional criterion for second-order accuracy at smooth extrema:
3Wð1

3
Þ �Wð�1Þ ¼ 2, though the practical significance of this result remains unclear. This property is fulfilled

by all j-schemes but by few non-linear schemes. For the majority of limiters W(�1) = 0 and hence the condition
becomes Wð1

3
Þ ¼ 2

3
, which is true only for first-order downwind, W(r) = 2r, and for Fromm’s scheme. A number

of schemes revert to W(r) = 2r as r approaches zero but most for r < 1
3
. Two exceptions, which therefore fulfill

the condition, are MUSCL and Superbee, though as noted above Superbee cannot be recommended for resolv-
ing smooth extrema. (Two members of the GPL-j-max class presented below, HOAB [60] and VONOS [54],
which behave identically to MUSCL and Superbee respectively for r < 1, also meet the criterion.)

5.3. Symmetry

A scheme is symmetric if the averaging function B(p,q) in Eq. (9) gives equal weight to both gradients, i.e.
B(p,q) = B(q,p)) W(r) = r W(1/r). The only symmetric j-scheme is Fromm’s scheme (j = 0) to which all
symmetric limiters will be tangential at r = 1. All of the ‘‘classical’’ limiters listed above in Eqs. (16)–(20)
are symmetric. It is possible that the appealing convergence properties of Fromm’s scheme, found in [58]
and outlined above, may be associated with the symmetry property and these appear to be shared by the var-
ious symmetric limited schemes. For a symmetric scheme W 0(0) = M, the maximum bound, and hence, as
W 0(0) 6 (2 + a) for positivity, this results in the condition: M 6 2 + a and M therefore cannot be greater than
2 in the case of symmetry.

5.4. Smooth-flow target scheme

It may be considered desirable to design a limiter that reverts to a particular linear scheme in smooth flow,
i.e. for r � 1. In this case the goal will be to specify the gradient W 0(1) = (j + 1)/2 for some j-scheme. If the
limiter has been chosen to be symmetric then W0ð1Þ ¼ 1

2
, though this may only be an average of two j-schemes

with the property j1 = �j2.

5.5. Second derivative at r = 1

It is important that the amount of switching in the sensitive r = 1 region should be minimized, preferably by
using one j-scheme for r � 1. Switching across r = 1 can lead to the use of non-optimal or mixed j-schemes
over large parts of the solution domain, reducing solution accuracy, and can affect convergence behaviour
under some conditions due to non-linear switching between schemes or ‘‘limiter chatter’’. As noted in Section
2.2, use of mixed j-schemes introduces a localized first-order term, as in Eq. (8). It was found in [58] that con-
vergence of both the Minmod and Superbee schemes applied to a laminar, incompressible shear-driven cavity
problem suffered from oscillations associated with discontinuous switching of schemes across r = 1 at certain
locations in the flow field, and therefore required greater under-relaxation. As a result the convergence times
for Minmod and Superbee were more than 100% greater than those of the Harmonic or van Albada limiters
(in addition to giving less accurate results).

5.6. Gradient at r = 0: W 0(0)

In order to achieve interpolative boundedness it is required that W 0(0) 6 (2 + a), where �1 6 a 6 0, while in
order to remain within the j-scheme region it is also required that W 0(0) P 1. W(r) = 2r is the first-order



194 N.P. Waterson, H. Deconinck / Journal of Computational Physics 224 (2007) 182–207
downwind scheme and W(r) = r is central differencing, hence W 0(0) controls the amount of downwinding used
to preserve discontinuities of negative curvature. While excessive use of first-order downwinding leads to over-
compressive behaviour, e.g. squaring off smooth extrema (as in the case of Superbee) its use in cases of extreme
curvature, i.e. for r very close to zero, can be recommended for effective resolution of discontinuities. In the
case of limiters designed to be smooth and continuous over the full range of r, such as van Albada, a must be
finite and less than zero and W 0(0) must be less than 2. This indicates that smooth continuous limiters must
compromise resolution of sharp gradients compared to the best non-smooth limiters, in particular if, as in
the case of van Albada, there is also a low maximum bound (see property 5.7).

5.7. Maximum bound: W(r) 6M, as r! ±1

A larger value of M can give better resolution of sharp gradients but may require heavier relaxation, or
shorter time steps in unsteady problems. Typically: 1 6M 6 4. (There may exist W(r) > M at local maxima.)
In the case of symmetry, W 0(0) = M, and hence the maximum bound and gradient at zero cannot be chosen
independently.

6. Classification and analysis of non-linear schemes

A limited number of classes of non-linear schemes have been identified and are presented here, encompass-
ing most of the effective schemes so far proposed. This classification also facilitates examination of the prop-
erties of each of these classes and the relative performance of the various schemes. Transformation of the NV
schemes considered into the more convenient FL form allows these to be included in the analysis. The tables
given in Appendix A summarize all of these classes along their various members and the properties of each of
the schemes: smooth-flow target scheme, maximum bound and slope at r = 0.

Most limiter formulations of interest fall into two basic categories:

(a) Piecewise-linear (PL) functions which offer the advantage of great flexibility, act simply as switches
between linear schemes. In this way, bounded versions of existing linear schemes may be produced. The
disadvantage is that its discontinuous nature may have adverse effects upon convergence behaviour under
some circumstances, in particular with a fully-implicit implementation. All PL schemes considered here
revert to first-order upwind (W(r) = 0) at extrema (r < 0).
(b) Polynomial ratios (PR) which offer the possibility of constructing smooth, continuous limiter functions
without discontinuous switching. The main disadvantages are lack of flexibility and difficulty of design and
lower accuracy than the best PL schemes, due to the use of a mixture of j-schemes. In this study the starting
point was the most general possible polynomial ratio which was examined in particular for ratios of poly-
nomials of order n = 1 and n = 2, applying the various properties 5.1 to 5.7.

6.1. Symmetric piecewise-linear (SPL) schemes

The simplest symmetric piecewise-linear limiter is MUSCL which simply follows Fromm’s scheme for
r � 1, only deviating to remain with the symmetric TVD region. All other symmetric PL limiters must switch
j-schemes across the r = 1 point, in a symmetric combination, j1 and j2, for which j1 = �j2. The earliest
examples of this are Minmod and Superbee which both switch between j = 1 and �1 (CDS and LUI respec-
tively) across r = 1, the former using CDS for r 6 1 and the latter for r P 1.

Most symmetric piecewise-linear limiters can therefore be grouped into two classes, termed here SPL-min
and SPL-max, for which the respective classical archetypes are Minmod and Superbee (with MUSCL being a
degenerate member of both classes):
WðrÞ ¼ max 0;min Mr;
1

2
ð1þ jÞr þ 1

2
ð1� jÞ; 1

2
ð1� jÞr þ 1

2
ð1þ jÞ;M

� �� �
SPL-min ð22Þ
and
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WðrÞ ¼ max 0;min Mr;max
1

2
ð1þ jÞr þ 1

2
ð1� jÞ; 1

2
ð1� jÞr þ 1

2
ð1þ jÞ

� �
;M

� �� �
SPL-max ð23Þ
for which 1 6M 6 2. The key distinction is that in the SPL-min limiters the slope decreases with increasing r,
across r = 1, while for the SPL-max class it increases.

Examples of SPL-min limiters are Minmod (j = 1, M = 1), MUSCL (j = 0, M = 2), UMIST [29] (j ¼ 1
2
,

M = 2) and SPL-1
3

[59] (j ¼ 1
3
, M = 2). The only published examples of SPL-max limiters of which the present

authors are aware are Superbee (j = 1, M = 2) and MUSCL once again. Other obvious members of the class
would be SPL-max-1

2
(j ¼ 1

2
, M = 2) and SPL-max-1

3
(j ¼ 1

3
, M = 2) which might be worthy of investigation as

less severe alternatives to Superbee. They would be expected to have behaviours falling between those of the
MUSCL and Superbee schemes and might show a tendency towards over compression. The Superbee scheme,
exemplifying the SPL-max class, can be seen in Fig. 4 while the SPL-1

3
scheme, representing the SPL-min class,

is shown in Fig. 7. Table A2 summarizes the details of these two classes and their various members.
With the exception of MUSCL, all SPL schemes violate property 5.5 in that they switch j-schemes across

r = 1. This can affect convergence behaviour under some circumstances and tends to lead to the use of non-
optimal j-schemes over part of the solution field (e.g. j ¼ � 1

2
or � 1

3
) and even combinations of two different

linear schemes in the same cell. As already noted above, the use of mixed j-schemes tends to introduce a local-
ized first-order term, shown in Eq. (8), which in this case would have a coefficient of ±j.

6.2. Generalized piecewise-linear (GPL) schemes

Removal of the requirement for symmetry allows a more flexible definition of piecewise-linear schemes. An
important class arises from the simple expedient of using a single chosen j-scheme to traverse the positive
region of the FL diagram for r > 0, combined with a maximum bound, M, and downwind-influence param-
eter, a, for regions of high solution curvature, controlling W 0(0). This has its origins in the van Leer MUSCL
scheme and was considered by Hunsdorfer et al. [18] (who assumed M = 2 and a = 0). The class, termed here
GPL-j, can be expressed as:
WðrÞ ¼ max 0;min ð2þ aÞr; 1
2
ð1þ jÞr þ 1

2
ð1� jÞ;M

� �� �
; GPL-j ð24Þ
where M P 1 and �1 6 a 6 0.
In addition to MUSCL (j = 0, M = 2, a = 0) it also includes two other schemes of interest: Koren’s limited

CUI scheme (j ¼ 1
3
, M = 2, a = 0) and the FL form of Gaskell and Lau’s SMART scheme (j ¼ 1

2
, M = 4,

a = 0), defined originally in NV form as a bounded QUICK scheme. It also contains two further schemes
of less practical interest: the Chakravarthy–Osher limiter [8] (j = �1, M = 1), which includes the NV scheme
BSOU [32] for a = 0 and represents a bounded linear-upwind scheme, and a bounded central-difference
Fig. 7. Example of symmetric piecewise-linear (SPL-min) limiter: SPL-1
3
.
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scheme, BCDS (j = 1, M P 1, a = �1) [59]. The resolution of discontinuities improves with increasing values
of M and decreasing values of jaj, however larger values of M tend to have a negative effect on convergence
behaviour so an optimum value needs to be chosen (usually in the range 2–4). The MUSCL and SMART
schemes are shown in Fig. 8. Table A3 summarizes the details of this class and its various members.

The Koren CUI limiter is very similar in principle to a limited j ¼ 1
3

scheme proposed by Roe and Baines
[41], and further investigated by Arora and Roe [3], in the context of explicit space-time discretizations. The
above form is a very convenient implementation of SMART as it requires neither multiple conditional state-
ments nor the special under-relaxation practices described in [14]. As noted in [59], the convergence behaviour
of SMART may be enhanced by reducing M from 4 to 2 or 3, with only a slight effect on the resolution of
discontinuities. A number of minor modifications to SMART, altering either M, a or both, have been pub-
lished in NV form under a confusing variety of names (listed in Table A3).

6.3. Symmetric polynomial-ratio (SPR) schemes

Considering the rather restricted class of PR limiters fulfilling the symmetry property, the only PR expres-
sion of power n = 1, satisfying properties 5.1 to 5.3 is:
WðrÞ ¼ 2r
r þ 1

; ð25Þ
which is in fact the van Leer Harmonic expression, (19), for r P 0. In the NV formulation, this expression is
equivalent to fitting a quadratic curve through the three critical points (0,0), (1

2
; 3

4
) and (1, 1) in the NV

diagram.
Selecting n = 2 leads to a one-parameter class of smooth limiters, controlled by M:
WðrÞ ¼ Mrðr þ 1Þ
r2 þ 2ðM � 1Þr þ 1

; 1 6 M 6 1:5: ð26Þ
M = 1 recovers the van Albada expression (20), however a new limiter is given by the limiting case of M = 1.5.
This makes much fuller use of the positivity region than does van Albada, with a larger value of M (and
W 0(0) = M) leading to better resolution of sharp gradients. As symmetric ratios for n = 3 always factorize back
to n = 2, this limiter, proposed by the present authors in [59], was termed the Optimum Symmetric Polynomial-

Ratio Expression or OSPRE:
WðrÞ ¼ 3rðr þ 1Þ
2ðr2 þ r þ 1Þ ; OSPRE ð27Þ
The van Albada and OSPRE schemes are shown in Fig. 9 and Table A4 summarizes the details of the two
schemes.
Fig. 8. Examples of generalized piecewise-linear (GPL-j) limiters.
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6.4. Generalized polynomial-ratio (GPR) schemes

It is clear from the above that symmetry represents a very tight restriction on limiter design and its removal
allows the specification of the other properties, in particular the choice of a target j-scheme. A general two-
parameter class of PR limiters allowing the specification of a target j-scheme and a maximum positive bound,
M, can be defined as follows:
WðrÞ ¼ rðMr þ bÞ
r2 þ ðM � 1Þr þ b

; b ¼ 2

1� j
�M P 0: GPR-j ð28Þ
Some members of the class are smooth and continuous over the full range of r 2 (�1,+1), under the nec-
essary condition (M � 1)2 < 4b, while the rest are well-defined only for r P 0. Most have order 2 and the slope
property: W 0(0) = 1, though for b = 0 they factorize down to order 1 with W 0(0) > 1. The class includes most of
the interesting PR limiters so far published, including the Harmonic and van Albada schemes. It should be
noted that not all combinations of M and j in (28) yield positive schemes and some necessary but not sufficient
conditions for positivity are given in Table A4.

In each of the cases: j = 0, 1
3

and 1
2
, the class leads to at least three types of limiters: a van Albada type (for

M = 1), a Harmonic type (for b = 0) and a further smooth, continuous form (for M = 2, j > 0 and M ¼ 3
2
,

j = 0). The van Albada and Harmonic types form sub-classes and are considered in the two following sub-
sections which are followed by consideration of a further class of PR limiters converted from cubic polyno-
mials in the NV diagram and of which one member, for j ¼ 1

2
, also belongs to the GPR class. Fig. 10 shows

examples of smooth, continuous GPR-j schemes while Fig. 11 shows examples of the harmonic-type. Tables
A4 and A5 summarize the details of these classes, for continuous and discontinuous functions respectively.

6.4.1. Generalized van Albada (GVA) schemes

The case of M = 1 leads to a generalized class of van Albada limiters, identified in [59], which share with
van Albada the properties M = 1 and W 0(0) = 1 but have been designed to be tangential to specific j-schemes:
WðrÞ ¼ rðr þ bÞ
r2 þ b

; b ¼ 1þ j
1� j

; GVA-j ð29Þ
These share with van Albada and OSPRE the property that for r = �1, at symmetrical extrema, they revert to
their target schemes. The van Albada and GVA-1

2
limiter functions are shown in Fig. 10 and the GVA-j

schemes are summarized in Table A4.

6.4.2. Generalized harmonic (GH) schemes

In the case of b = 0 the GPR-j limiters factorize down to order 1, leading to a generalized form of the Har-
monic limiter identified by the present authors in [59] and termed there ‘‘generalized harmonic’’. This is a one-
parameter class defined using M, the maximum bound, and smooth only for r P 0:
Fig. 9. Examples of symmetric polynomial-ratio (SPR) limiters.



Fig. 10. Examples of generalized PR (GPR-j) and van Albada (GVA) limiters.

Fig. 11. Examples of generalized harmonic (GH-j) limiters.
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WðrÞ ¼ Mðr þ jrjÞ
2ðr þM � 1Þ ; M ¼ 2

1� j
P 2; GH-j ð30Þ
for which W 0(0) = M/(M–1). M = 2 gives van Leer Harmonic (j = 0, W 0(0) = 2), M = 3 gives H-CUI [59]
j ¼ 1

3
, W 0(0) = 1.5) and M = 4 gives H-QUICK [59] (j ¼ 1

2
, W 0(0) = 1.33). The van Leer Harmonic (GH-0)

and H-CUI (GH-1
3
) schemes are shown in Fig. 11 and the GH-j schemes are summarized in Table A5.

6.4.3. Polynomial NV schemes

A number of schemes have been proposed using simple polynomial functions to traverse the CBC region of
the NV diagram, passing through the three critical points: (0, 0), (1

2
; 3

4
) and (1, 1). Such polynomials in NV

form, of order n, transform into polynomial-ratio limiters of order (n � 1) in FL form. Zhu [64] proposed
a quadratic fit, HLPA, which is equivalent to the Harmonic limiter in FL form (tangential to Fromm’s
scheme) while a number of authors [9,33,62,65] have proposed the same cubic polynomial, tangential to
QUICK at /	C ¼ 1

2
, under a variety of names (it will be referred to here as SMARTER). This can be generalized

to a wider class of polynomials [66] each tangential to a specific j-scheme which can be written in the following
FL form which is smooth for r P 0:
WðrÞ ¼ ðr þ rj jÞ ð1þ jÞr þ ð1� jÞf g
ðr þ 1Þ2

; 0 6 j 6 1; PNV� j ð31Þ
for which M = 2(1 + j) and W 0(0) = 4 �M. This reduces to the Harmonic limiter for j = 0 (M = 2,
W 0(0) = 2), gives a limiter tangential to j ¼ 1

3
ðM ¼ 8

3
; W0ð0Þ ¼ 4

3
Þ and gives the SMARTER scheme for j ¼ 1

2
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(M = 3, W 0(0) = 1). SMARTER is also a member of the GPR-j class given above. The PNV-j schemes are
summarized in Table A5.

6.5. Other miscellaneous non-linear schemes

Listed in Table A6 of Appendix A are a number of miscellaneous limiter forms which do not fit into the
above classifications for various reasons. Some of these illustrate, by negative example, the benefits of follow-
ing the proposed design principles.

In [59] a quadratic curve fit in the FL diagram, GPa-j, was suggested with a single parameter, j, defining
the target j-scheme and setting the slope at r = 0. The performance of the GPa-1

2
scheme was examined in [59]

and shown to be reasonable but not outstanding. Cubic and higher polynomial curve fits allow more param-
eters to be specified but tend to suffer from inflection points and other irregularities.

Jameson’s a-mod scheme [19] is a one-parameter symmetric family giving Minmod for a = 0, Harmonic for
a = 1 and averages of the two in between. These schemes can therefore not be expected to be better than Har-
monic and may be considerably worse for low values of a. Jameson’s a–b-mod scheme [19] gives a-mod for
b = 1 and W(r) = max(0, r1/2) for b = 0. For all cases with b < 1 it gives a maximum bound and W 0(0) of 1
and is therefore not positive for these values.

Spekreijse [43] proposed a one-parameter class of smooth, continuous PR limiters based on j. These share
the properties: M = 1 + j and W 0(0) = 1 � j and thus for j > 0, W 0(0) < 1 and for j < 0, M < 1. For j 6¼ 0 the
limiters therefore go partially outside the j-scheme region (using a convex average of CDS and FOU). Hence
the optimum member of the class is j = 0 which is in fact the van Albada limiter. Two other smooth, contin-
uous PR limiters, of Spekreijse [43] and Koren [23] respectively, are included in Table A6, both of which share
the problem of having W0ð0Þ ¼ 1

2
and therefore going outside the j-scheme region.

The Gamma scheme of Jasak et al. [21], proposed in NV form as a modified form of CDS respecting the
CBC, blends CDS with an ad hoc quadratic function. The blending is controlled by a parameter, bm, rec-
ommended to fall in the range 0.1–0.5, with lower values giving better resolution of sharp gradients and
higher values giving better convergence. In FL form it can be seen to be a combination of CDS with a poly-
nomial ratio of order 1, with bm being equal to the reciprocal of the maximum bound, M. For M = 2
(bm = 0.5) it is equivalent to a blending of the Minmod (for r 6 1) and Harmonic (r P 1) limiters while
as M increases it becomes closer to bounded CDS [59] which uses CDS (j = 1) over most of the smooth
region and can require heavy under-relaxation, see Section 7.2. Jasak et al. [21] give results for bm = 0.1
(M = 10) which are close to the accuracy of the SMART scheme for smooth extrema and sharp gradients
(though at the expense of the problematic convergence associated with CDS), while Alves et al. [2] show
results using bm = 0.5 which are only slightly better than those for Minmod (as would be expected from
the above analysis).

Table A6 also contains several other limiters whose complex functional forms or unusual characteristics
render them less interesting for practical use.

7. Numerical implementation and comparison

In [58,59] a number of schemes were implemented within the PHOENICS CFD code [45], which solves the
Reynolds-averaged Navier–Stokes equations using a staggered, cell-centred, finite-volume discretization and a
version of the SIMPLE pressure-correction algorithm. All solutions here were obtained using a version of
Stone’s strongly-implicit algorithm [34]. The implementation was carried out using a deferred-correction
approach via source terms [22,58]. All non-linear schemes considered were expressed in the form of flux limiters,
thereby allowing direct comparison free of implementational differences and enhancing program synergy.

7.1. Scalar advection test cases

General comparisons were described in [58] using several standard incompressible, viscous test cases how-
ever attention here will be restricted to two steady, 2D scalar convection cases considered in [59]. These are
both based on the circular velocity field: u(x,y) = y and v(x,y) = �x in a rectangular domain x 2 [�1,1]
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and y 2 [0,1]. Non-zero inflow values are specified only for x 2 [�1,0] and y = 0 where one of two profiles is
imposed, the first smooth, the second discontinuous:

� Case 1 – Gaussian distribution: /(x) = exp(�2x)sin2(px).
� Case 2 – three-level step function: /(x) = 0, x < 0.2 or x > 0.8, /(x) = 1 for 0.2 6 x 6 0.4 and 0.6 6 x 6 0.8

and /(x) = 0.5, 0.4 < x < 0.6.

The exact solutions, /(r), consist of the above inlet expressions with r =
p

(x2 + y2) replacing x.
The results for 26 linear and non-linear schemes are given in Table B1 in terms of the number of iterations

required for convergence, the false time-step size required and the L1-norm error in the converged solution.
The effective order of accuracy for the smooth solution in Case 1 is also given. The solution fields for the
two cases are illustrated in Figs. 12 and 13, respectively, in the form of contours of the scalar field (calculated
using the j ¼ 1

3
scheme for Case 1 and Superbee for Case 2). Figs. 14 and 15 show plots of three solution pro-

files at the outlet for each of the cases: the most accurate, least accurate and median results. (For Case 2,
Superbee is in fact the most accurate scheme but is not plotted due to its lack of general applicability.)

It should be noted that though the implementation is typical of that used in many cell-centred finite-volume
computer codes, the relative convergence behaviour of the various schemes may depend on the specific solu-
tion procedure employed (for example the use or not of deferred correction) and thus the convergence results
presented here cannot be viewed as completely general. The convergence behaviour of non-linear schemes
within implicit solution procedures is also considered by Venkatakrishnan [55,56] and Tiesinga [48].
Fig. 12. Gaussian test case – scalar contours for j ¼ 1
3

scheme.

Fig. 13. Step test case – scalar contours for Superbee scheme.



Fig. 14. Gaussian test case (61 · 31 grid) – outlet profiles for three schemes.

Fig. 15. Step test case (81 · 41 grid) – outlet profiles for three schemes.
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7.2. Performance comparisons

In Table B1, the schemes have been placed in an order based on their average ranking (linear and non-lin-
ear separately) according to five different measures: absolute error and number of iterations for Cases 1 and 2
and the order of accuracy for Case 1. A score consisting of the normalized averaged ranking (maximum value
1) gives some measure of their relative effectiveness in terms of both accuracy and convergence. Three of the
top five schemes (OSPRE, H-CUI and SPL-1

3
) were proposed in [59] and designed using the principles outlined

in Section 5.
The most accurate results for both cases (ignoring Superbee with its special performance for discontinuities

in Case 2) were given by the three GPL-j schemes: MUSCL, SMART and Koren (all in their original forms).
These gave error levels and orders of accuracy which were mutually similar but significantly better than other
non-linear schemes (with SMART being marginally the most accurate). These three schemes however differ
significantly in convergence behaviour with MUSCL requiring less under-relaxation and between 10% and
60% fewer iterations than Koren or SMART and hence being ranked first. SMART (with M = 4) requires
the highest number of iterations of any scheme for Case 2 and the third highest for Case 1 (though with
M = 2 it would have somewhat improved convergence, closer to that of the Koren scheme).

Of the ‘‘classical’’ limiters only the van Leer MUSCL and Harmonic schemes appear in the upper half of
the ranking. Minmod and Superbee are the least accurate schemes for the smooth case, confirming the analysis
in Section 3.3, based on Eq. (8). For the discontinuous case Minmod is the least accurate and Superbee the
most accurate.

Of the smooth limiters, the OSPRE scheme, Eq. (27), stands out, giving the best convergence of any scheme
in both cases and a reasonable level of accuracy. The H-CUI scheme (smooth for r P 0) also performs well,
being more accurate than OSPRE but with slightly slower convergence. The non-symmetric van Albada
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schemes, GVA-1
2

and GVA-1
3
, though appealing in form, do not improve on the performance of the original

van Albada, while the two GPR-j schemes do slightly better. All of the smooth, continuous limiters, with
the exception of OSPRE, appear in the lower half of the ranking.

In general the best convergence results come from the symmetrical schemes, both PL and PR, (with the
exception of Superbee) and the worst convergence from the non-symmetric PL schemes. The BCDS scheme
gives significantly the worst convergence for the smooth case and, along with SMART, also the worst for
the discontinuous case.

8. Conclusions

The flux-limiter and normalized-variable approaches to the design of non-linear convection schemes have
been reviewed and compared. The flux-limiter form has been preferred here due to its compactness, flexibility
and implementational advantages. Most of the published normalized-variable schemes have been converted to
flux-limiter form allowing a general classification and analysis of a large number of schemes within the cell-
centred, finite-volume framework. The classification produced is presented in a number of tables which include
most published non-linear schemes.

Comparisons of three widely-used boundedness criteria show that Spekreijse’s positivity concept gives the
most flexible set of conditions, with Gaskell and Lau’s Convection Boundedness Criterion (CBC) being more
restrictive at extrema and Sweby’s total-variation-diminishing (TVD) conditions further adding a lower max-
imum bound of 2.

A set of properties has been proposed which can be used to design or select non-linear schemes for a par-
ticular purpose. Two essential properties, boundedness and linearity preservation, are shared by all schemes of
interest, however the remaining five optional properties determine the difference in performance between the
various schemes and can be used to understand their behaviour.

Numerical comparisons for two scalar advection cases reveal that the piecewise-linear GPL-j schemes,
SMART, Koren and MUSCL, give the highest, and mutually similar, levels of accuracy. Their convergence
behaviour however differs significantly, with MUSCL being the best behaved. Of the smooth, continuous lim-
iters, OSPRE performs the best, combining reasonable accuracy with the best convergence behaviour of any
non-linear scheme considered. Of the five ‘‘classical’’ limiter functions considered here: Minmod, Superbee,
MUSCL, Harmonic and van Albada, only the MUSCL and Harmonic schemes are competitive with the best
of the more recent limiters, with MUSCL being particularly advantageous. The comparisons reveal wide vari-
ations in performance between the best and worst schemes, in terms of both accuracy and convergence behav-
iour, and underline the need to select carefully an appropriate non-linear convection scheme.

Appendix A. Classification of convection schemes

The tables (Tables A1–A6) presented in this appendix attempt to classify all non-linear schemes, of which
the authors are aware in the published literature. All schemes have been expressed in flux-limiter form,
whether or not they were originally proposed in that form, both for reasons of consistency and for ease of
implementation. In all cases, M represents the maximum positive bound of W(r) as r! ±1, W 0(0) is the slope
of W(r) at r = 0 and j represents the j-scheme to which the limiter is tangential at r = 1 (i.e. for a smooth
solution).
Table A1
Linear j-scheme family (unbounded)

Name Limiter Reference Comments

General form 1
2
fð1þ jÞrþ ð1� jÞg [53] Class of linear schemes: �1 6 j 6 1.

Linear-upwind (LUI) 1 [4,36,57] j = �1 : unique fully-upwind j-scheme.
Fromm 1

2 r þ 1
2 [13] j = 0 : unique symmetric j-scheme.

Cubic-upwind (CUI) 2
3 r þ 1

3 [1] j ¼ 1
3 : unique third-order j-scheme.

Quadratic-upwind (QUICK) 3
4 r þ 1

4 [25] j ¼ 1
2 : unique quadratic interpolation.

Central difference (CDS) r – j = 1 : unique non-upwind j-scheme.



Table A2
Symmetric piecewise-linear (SPL) schemes

Name Limiter Ref. j M W 0(0) Comments

SPL-min max½0;minfMr; 1
2
ð1þ jÞrþ 1

2
ð1� jÞ;

1
2
ð1� jÞrþ 1

2
ð1þ jÞ;Mg�

[59] [�1,1] [1,2] M Symmetric combination of two j-

schemes.

Minmod max[0,min(r,1)] [41] 1, �1 1 1 Also known as: SOUCUP [63].

UMIST max½0;minðMr; 1
4þ 3

4 r; 3
4þ 1

4 r;MÞ� [29] 1
2 ;� 1

2 (1,2] M Original: M = 2.

SPL-1
3 max½0;minðMr; 1

3þ 2
3 r; 2

3þ 1
3 r;MÞ� [59] 1

3 ;� 1
3 (1,2] M Also known as PLS-1

3 [59].

MUSCL max½0;minðMr; 1
2þ 1

2 r;MÞ� [51] 0 (1,2] M Original: M = 2. Also known as:
MLU [31], Jameson a-mean [19].
Also belongs to SPL-max class.

SPL-max max½0; minfMr;maxð1
2
ð1þ jÞrþ 1

2
ð1� jÞ;

1
2
ð1� jÞrþ 1

2
ð1þ jÞÞ;Mg�

Present [�1,1] (1,2] M Alternative symmetric combination of

two j-schemes.

Superbee max[0,min{Mr,max(r, 1),M}] [38] 1, �1 (1,2] M Original: M = 2.

SPL-max-1
2 max½0;minðMr;maxð14þ 3

4 r; 3
4þ 1

4 rÞ;MÞ� Present 1
2 ;� 1

2 (1,2] M

SPL-max-1
3 max½0;minðMr;maxð13þ 2

3 r; 2
3þ 1

3 rÞ;MÞ� Present 1
3 ;� 1

3 (1,2] M

Sweby U
family

max[0,min(Mr, 1),min(r,M)] [46,47] 1, �1 [1,2] M U ” M. Also known as: Jameson a-bee

[19]. Includes Minmod (M = 1) and

Superbee (M = 2).

Table A3
Generalized piecewise-linear (GPL) schemes

Name Limiter Ref. j M W 0(0) Comments

GPL-j max½0;minfð2þ aÞr; 1
2
ð1� jÞ þ 1

2
ð1þ jÞr;Mg� [18,59] [�1,1] P1 2 + a Bounded j-scheme. �1 6 a 6 0.

Chakravarthy–
Osher

max[0,min{(2 + a)r, 1}] [8] �1 P1 2 + a Also known as: BSOU [32] (a = 0).

MUSCL max½0;minfð2þ aÞr; 1
2 r þ 1

2 ;Mg� [50,51] 0 P1 2 + a Original: a = 0, M = 2. Also known as:
MLU [31], Jameson a-mean [19].

Koren max½0;minfð2þ aÞr; 2
3 r þ 1

3 ;Mg� [24] 1
3 P1 2 + a Original: a = 0, M = 2. See also: Roe &

Baines [41] and Arora & Roe [3].
SMART max½0;minfð2þ aÞr; 3

4 r þ 1
4 ;Mg� [14] 1

2 P1 2 + a Original: a = 0, M = 4. Also known as:
COPLA (a = �0.5, M = 2.5) [10]; AVL-
SMART (a = �0.5, M = 2.5) [37];
CUBISTA (a = �0.5, M = 1.5) [1]; Lin &
Lin (a = 0, M = 2) [30]; WACEB (a = 0,
M = 2) [42].

Bounded CDS max[0,min{r,M}] – 1 P1 1 Bounded central-difference scheme. As
Minmod for M = 1.

GPL-j-max max½0;minfð2þ aÞr;maxð1
2
ð1þ j1Þrþ 1

2
ð1� j1Þ;

1
2
ð1�j2Þrþ 1

2
ð1þ j2ÞÞ;Mg�

Present [�1,1] P1 2 + a Combination of two j-schemes switching

across r = 1. �1 6 a 6 0.

Superbee max[0,min{(2 + a)r,max(1,r),M}] [38] �1, 1 P1 2 + a Original: a = 0, M = 2.

STOIC max½0;minfð2þ aÞr;maxð34 r þ 1
4 ; rÞ;Mg� [11] 1

2, 1 P1 2 + a Original: a = 0, M = 4.

VONOS max½0;minfð2þ aÞr;maxð1; 3
4 r þ 1

4Þ;Mg� [54] �1, 1
2 P1 2 + a Original: a = 0, M = 18.

HOAB max½0;minfð2þ aÞr;maxð12 r þ 1
2 ; rÞ;Mg� [60] 0, 1 P1 2 + a Original: a = 0, M = 5.
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Table A6

Miscellaneous and hybrid schemes

Name Limiter Ref. j M W 0(0) Comments

GPa-j max½0; minf1
2 ðj� 1Þr2 þ 1

2 ð3� jÞr;Mg� [59] [�1, 1] [1, (3 � j)2/
8(1 � j)]

(3 � j)/
2

Quadratic fit for r > 0, BCDS for
j = 1.

Jameson a-mod max[0, (a + 1)r/
{max(r, 1) + amin(r, 1)}]

[19] 0 a + 1 a + 1 a 2 [0, 1]. Average of Minmod
(a = 0) and van Leer Harmonic
(a = 1).

Jameson a–b-mod max[0, (a + 1)r(b+1)/2/
{max(rb, 1) + amin(rb, 1)}]

[19] 0 [1,1) [1,1) a 2 [0, 1],b 2 [0,1]. As a-mod for
b = 1. For b < 1:
W(r)! (a + 1)r(1�b)/2 as r! +1
and W 0(r)!1 as r! 0, i.e. not
positive. For b = 0: W (r) = r1/2 for
r P 0.

Gamma max[0, min{r,Mr/(r + 1)}] [21] 1
2 P2 1 Original: 2 6M 6 10 (M = 1/bm).

Spekreijse-j {(1 + j)r + (1 � j)}r/(r2 + 1) [43] [� 1
3, 1] 1 + j 1 � j Gives van Albada for j = 0.

Spekreijse ð23 r þ 1
3Þð3r3 � 2r2 þ 3rÞ=2ðr4 þ 1Þ [43] 1

3 1 1
2

Koren-PR r(2r + 1)/(2r2 � r + 2) [23] 1
3 1 1

2 W(r) < r for 0 < r < 1
2.

SHARP min[max{0, 2r(r1/2 � 1)/(r � 1)},
maxf3

4 r þ 1
4 ;� 5

4g]
[27] 1

2 1 2 W(r)! 1 as r! 1 but W(1) = 0/0.
W(r)! +1 as r! +1, i.e. no
+ve bound.

Piperno & Depeyre r 2 [�1, 0]:0;
r 2 [0,1]:w(r) = 1 + (3

2r + 1)(r � 1)3;
r 2 [1,+1]: w(r) = (3r2 � 6r + 19)/
(r3 � 3r + 18) W (r) = (2

3r + 1/3)w(1/r)

[35] 1
3 1 1

LPPA r 2 [�1, 0]:0; r 2 [0, 1]:r(r + 3)/2(r + 1);
r 2 [1,+1]:(5r � 1)/2(r + 1)

[9] 1
2

5
2

3
2

Table A4
Polynomial-ratio schemes – smooth, continuous functions

Name Limiter Ref. j M W Comments

Symmetric PR form Mr(r + 1)/(r2 + 2(M � 1)r + 1) [59] 0 [1,1.5] M Symmetry) j = 0, W0(0) = M.

van Albada r(r + 1)/(r2 + 1) [49] 0 1 1
OSPRE 3r(r + 1)/2(r2 + r + 1) [59] 0 1.5 1.5

Generalized PR-j r(Mr + b)/(r2 + (M � 1)r + b) Present [�1,1) [0,�1 + [8/

(1 � j)]1=2)
1 b = 2/(1 � j) �M; b > (M � 1)2/4

()smooth) and b > (M � 2)2/8

()W(r) 6 2r, r > 0).
GPR-0 r(3r + 1)/(2r2 + r + 1) Present 0 1.5 1
GPR-1

3 r(2r + 1)/(r2 + r + 1) [59] 1
3 2 1 Also known as: PRNS-1

3 [59].

GPR-1
2 2r(r + 1)/(r2 + r + 2) [59] 1

2 2 1 Also known as: PRNS-1
2 [59].

Generalized van Albada r(r + b)/(r2 + b) [59] ½� 7
9
; 7

9
� 1 1 b = (1+j)/(1 � j); GPR-j, M = 1.

van Albada (GVA-0) r(r + 1)/(r2 + 1) [49] 0 1 1 b = 1.
GVA-1

3 r(r + 2)/(r2 + 2) [59] 1
3 1 1 b = 2.

GVA-1
2 r(r + 3)/(r2 + 3) [59] 1

2 1 1 b = 3.

Table A5
Polynomial-ratio schemes – discontinuous functions

Name Limiter Ref. j M W0(0) Comments

Generalized Harmonic M(r + |r|)/2(r + M � 1) [59] [0,1) 2/

(1 � j)

M/

(M � 1)

M P 2.

Harmonic (r + |r|)/(r + 1) [50,51] 0 2 2 Also known as: HLPA [64].
H-CUI 3(r + |r|)/2(r + 2) [59] 1

3 3 3
2

H-QUICK 4(r + |r|)/2(r + 3) [59] 1
2 4 4

3

Polynomial NV (r + |r|)[(1 + j)r + (1 � j)]/(r + 1)2 [66] [0,1] 2(1+j) 4 �M Cubic polynomial fits in NV diagram.

PNV-1
3 2(r + |r|)(2r + 1)/3(r + 1)2 [66] 1

3
8
3

4
3

SMARTER (r + |r|)(3r + 1)/2(r + 1)2 [9] 1
2 3 1 Also known as: NOTABLE [33],

CHARM [62], ISNAS [65].
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Appendix B. Performance comparison of linear and non-linear convection schemes

Table B1 presents the results of the two scalar convection test cases discussed in Section 7.
Table B1
Performance comparison of various schemes for smooth and discontinuous test cases

Test cases Gaussian distribution (61 · 31 grid) Step function (81 · 41 grid)

Scheme Score n e · 103 Nits dtf e · 102 Nits dtf

FOU – 0.76 18.2 5 1000 167.8 12 100

j-Schemes
CUI (1

3) 0.84 2.24 0.382 29 200 6.15 51 25
Fromm’s (0) 0.80 2.23 0.572 23 200 6.53 39 50
QUICK (1

2) 0.72 2.21 0.315 33 200 5.92 60 25
LUI (�1) 0.40 2.11 1.16 47 5 7.33 51 5
CDS (1) 0.24 2.07 1.12 985 30 8.99 1348 25

FL-Schemes
MUSCL 0.78 2.22 0.626 59 5 5.53 107 5
OSPREa 0.70 1.87 1.21 45 10 6.52 61 10
H-CUIa 0.69 1.88 1.03 64 10 6.07 73 5
Harmonic 0.65 1.95 1.02 61 10 6.23 107 5
SPL-1

3
a 0.65 1.88 1.11 57 5 6.35 90 5

SMARTb 0.62 2.11 0.555 143 2 4.98 244 1.5
Koren 0.62 2.08 0.635 98 2.5 5.37 121 2.5
H-QUICKa 0.61 1.87 1.02 75 5 5.9 77 5
SMARTERb 0.57 1.81 1.18 72 5 6.19 75 10
BLUI(SOU) 0.55 2.08 1.08 89 5 6.34 97 5
UMIST 0.52 1.76 1.45 58 5 6.84 65 5
GPA-1

2
a 0.51 1.79 1.29 73 5 6.41 72 5

GPR-1
2
a 0.51 1.77 1.34 67 5 6.47 70 5

GPR-1
3
a 0.46 1.8 1.31 61 5 6.52 99 2.5

van Albada 0.44 1.77 1.51 63 5 7.03 68 5
Minmod 0.41 1.58 2.54 57 10 8.45 62 10
GVA-1

2
a 0.33 1.74 1.49 84 5 6.76 73 5

GVA-1
3
a 0.33 1.74 1.52 73 5 6.92 70 5

Superbee 0.28 1.23 1.62 157 2.5 3.77 140 10
BCDS 0.27 1.75 1.55 483 1 5.78 232 2

Bold: lowest or highest values
e = (R|/ � /exact|)/Ncell: error in L1 norm (sum over total number of cells, Ncell).
n = effective order of scheme for smooth solution, assuming: e 
 Dxn.
Nits = number of iterations to achieve convergence: (residual / net flux) < 0.05%.
dtf = false time-step/courant time step : small dtf) strong relaxation.
Score: normalized average of rankings for n, e and Nits (for both cases).
a Proposed in [59].
b Converted from NV scheme.
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[37] V. Pržulj, B. Basara, Bounded convection schemes for unstructured grids, AIAA Paper 2001-2593, in: AIAA CFD Conference,

Anaheim, CA, 2001.
[38] P.L. Roe, Some contributions to the modelling of discontinuous flows, in: Engquist, Osher, Somerville, (Eds.), Lectures in Applied

Mathematics, Large-scale Computations in Fluid Mechanics (AMS-SIAM Summer Seminar, La Jolla, CA, USA, 1983), Am. Math.
Soc., 1985, Vol. 22, Part 2, p. 163.

[39] P.L. Roe, Finite-volume methods for the compressible Navier–Stokes equations, in: Taylor, Habashi, Hafez (Eds.), Proceedings of
the Fifth International Conference on Numerical Methods in Laminar and Turbulent Flow, Montreal, July, Pineridge Press, Swansea,
1987, p. 2088.

[40] P.L. Roe, Characteristic-based schemes for the Euler equations, Ann. Rev. Fluid Mech. 18 (1986) 337.



N.P. Waterson, H. Deconinck / Journal of Computational Physics 224 (2007) 182–207 207
[41] P.L. Roe, M.J. Baines, Algorithms for advection and shock problems, in: Viviand (Ed.), Proceedings of the Fourth GAMM
Conference on Numerical Methods in Fluid Mechanics, vol. 5, Vieweg, 1982, p. 281.

[42] B. Song, G.R. Liu, K.Y. Lam, R.S. Amano, On a higher-order bounded discretization scheme, Int. J. Numer. Methods Fluids 32 (7)
(2000) 881.

[43] S.P. Spekreijse, Multigrid solution of the steady Euler equations, Doctoral Thesis, Delft University of Technology, The Netherlands,
1986.

[44] S.P. Spekreijse, Multigrid solution of monotone second-order discretizations of hyperbolic conservation laws, Report NM-R8611,
Centrum voor Wiskunde en Informatica (CWI), Amsterdam, The Netherlands, 1986.

[45] D.B. Spalding, A general-purpose computer program for multi-dimensional one- and two-phase flows, IMACS Meeting, Lehigh
University, Pennsylvania, 1981.

[46] P.K. Sweby, High resolution schemes using flux limiters for hyperbolic conservation laws, SIAM J. Numer. Anal. 21 (1984) 995.
[47] P.K. Sweby, High resolution TVD schemes using flux limiters, in: Engquist, Osher and Somerville (Eds.), Lectures in Applied

Mathematics, Large-Scale Computations in Fluid Mechanics, (AMS-SIAM Summer Seminar, La Jolla, CA, USA, 1983), Am. Math.
Soc., Vol. 22, Part 2, 1985, p. 289.

[48] G. Tiesinga, Multi-level ILU preconditioners and continuation methods in fluid dynamics, Doctoral Thesis, Rijksuniversiteit
Groningen, The Netherlands, 2000.

[49] G.D. van Albada, B. van Leer, W.W. Roberts, A comparative study of computational methods in cosmic gas dynamics, Astron.
Astrophys. 108 (1982) 76.

[50] B. van Leer, Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order
scheme, J. Comput. Phys. 14 (1974) 361.

[51] B. van Leer, Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection, J. Comput. Phys. 23
(1977) 276.

[52] B. van Leer, Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method, J. Comput. Phys.
32 (1979) 101.

[53] B. van Leer, Upwind difference methods for aerodynamic problems governed by the Euler equations, in: Engquist, Osher and
Somerville (Eds.), Lectures in Applied Mathematics, Large-Scale Computations in Fluid Mechanics, (AMS-SIAM Summer Seminar,
La Jolla, CA, USA, 1983), Am. Math. Soc., vol. 22, Part 2, 1985, p. 327.

[54] A. Varonos, G. Bergeles, Development and assessment of a variable-order non-oscillatory scheme for convection term discretization,
Int. J. Numer. Methods Fluids 26 (1) (1998) 1.

[55] V. Venkatakrishnan, Preconditioned conjugate gradient methods for the compressible Navier–Stokes equations, AIAA J. 29 (7)
(1991) 1092.

[56] V. Venkatakrishnan, On the accuracy of limiters and convergence to steady state solutions, AIAA paper 93-0880, in: 31st AIAA
Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 1993.

[57] R.F. Warming, R.M. Beam, Upwind second-order difference schemes and application in aerodynamics flows, AIAA J. 14 (9) (1976)
1241.

[58] N.P. Waterson, Development of a bounded higher-order convection scheme for general industrial applications, Project Report 1994-
33, von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium, 1994.

[59] N.P. Waterson, H. Deconinck, A unified approach to the design and application of bounded higher-order convection schemes, in:
Taylor, Durbetaki (Eds.), Proceedings of the Ninth International Conference on Numerical Methods in Laminar and Turbulent
Flow, Atlanta, July, Pineridge Press, Swansea, 1995, p. 203.

[60] J.-J. Wei, B. Yu, W.-Q. Tao, Y. Kawaguchi, H.-S. Wang, A new high-order accurate and bounded scheme for incompressible flow,
Numer. Heat Transfer, Part B 43 (2003) 19.

[61] B. Yu, W.-Q. Tao, D.S. Zhang, Q.W. Wang, Discussion on numerical stability and boundedness of convective discretized scheme,
Numer. Heat Transfer, Part B 40 (2001) 343.

[62] G. Zhou, L. Davidson, E. Olsson, Transonic inviscid/turbulent airfoil flow simulations using a pressure-based method with high order
schemes, Lecture Notes in Physics 453 (1995) 372.

[63] J. Zhu, W. Rodi, A low dispersion and bounded convection scheme, Comput. Methods Appl. Mech. Eng. 92 (1991) 87.
[64] J. Zhu, On the higher-order bounded discretization schemes for finite volume computations of incompressible flows, Comput.

Methods Appl. Mech. Eng. 98 (1992) 345.
[65] M. Zijlema, On the construction of a third-order accurate monotone convection scheme with application to turbulent flows in general

domains, Int. J. Numer. Methods Fluids 22 (1996).
[66] M. Zijlema, Computational modeling of turbulent flow in general domains, Doctoral Thesis, Delft University of Technology, The

Netherlands, 1996.


	Design principles for bounded higher-order convection schemes - a unified approach
	Introduction
	Linear schemes
	 kappa -scheme formulation
	Accuracy and the modified differential equation
	Comparative performance of linear schemes

	Non-linear schemes - flux-limiter approach
	Flux-limiter formulation
	Boundedness criteria
	Total-variation diminishing
	Positivity

	Classical limiter functions
	Minmod [41]
	Superbee [38]
	MUSCL [50,51]
	Harmonic [50,51]
	van Albada [49]


	Non-linear schemes - normalized-variable approach
	Boundedness criteria
	Normalized-variable schemes
	Relationship to flux-limiter approach
	Comparison of boundedness criteria

	Design principles for non-linear schemes
	Boundedness
	Linearity preservation
	Symmetry
	Smooth-flow target scheme
	Second derivative at r=1
	Gradient at r=0:  Psi  prime (0)
	Maximum bound:  Psi (r) les M, as r rarr  plusmn  infin 

	Classification and analysis of non-linear schemes
	Symmetric piecewise-linear (SPL) schemes
	Generalized piecewise-linear (GPL) schemes
	Symmetric polynomial-ratio (SPR) schemes
	Generalized polynomial-ratio (GPR) schemes
	Generalized van Albada (GVA) schemes
	Generalized harmonic (GH) schemes
	Polynomial NV schemes

	Other miscellaneous non-linear schemes

	Numerical implementation and comparison
	Scalar advection test cases
	Performance comparisons

	Conclusions
	Classification of convection schemes
	Performance comparison of linear and non-linear convection schemes
	References


